p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.15M4(2), (C22×C4)⋊2C8, C23⋊C8.1C2, (C23×C4).3C4, (C22×C4).2D4, C2.7(C23⋊C8), C24.16(C2×C4), C23.14(C2×C8), C22.12(C22⋊C8), C22.36(C23⋊C4), C23.34D4.1C2, C2.1(C23.D4), C22.7(C4.D4), C23.148(C22⋊C4), (C2×C22⋊C4).4C4, (C2×C22⋊C4).2C22, SmallGroup(128,49)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C23 — C2×C22⋊C4 — C23.15M4(2) |
C1 — C22 — C23 — C2×C22⋊C4 — C23.15M4(2) |
Generators and relations for C23.15M4(2)
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=c, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abd5 >
Subgroups: 208 in 75 conjugacy classes, 22 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C2×C4, C23, C23, C22⋊C4, C2×C8, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C23×C4, C23⋊C8, C23.34D4, C23.15M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.D4, C23⋊C8, C23.D4, C23.15M4(2)
Character table of C23.15M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -i | i | -i | -i | i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | i | -i | i | i | -i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | 1 | 1 | -i | -1 | -i | i | ζ85 | ζ87 | ζ8 | ζ8 | ζ87 | ζ85 | ζ83 | ζ83 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | 1 | 1 | -i | -1 | -i | i | ζ8 | ζ83 | ζ85 | ζ85 | ζ83 | ζ8 | ζ87 | ζ87 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | -1 | -1 | i | 1 | -i | i | ζ83 | ζ8 | ζ83 | ζ87 | ζ85 | ζ87 | ζ8 | ζ85 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | -1 | -1 | i | 1 | -i | i | ζ87 | ζ85 | ζ87 | ζ83 | ζ8 | ζ83 | ζ85 | ζ8 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -1 | -1 | -i | 1 | i | -i | ζ85 | ζ87 | ζ85 | ζ8 | ζ83 | ζ8 | ζ87 | ζ83 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | 1 | 1 | i | -1 | i | -i | ζ83 | ζ8 | ζ87 | ζ87 | ζ8 | ζ83 | ζ85 | ζ85 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -1 | -1 | -i | 1 | i | -i | ζ8 | ζ83 | ζ8 | ζ85 | ζ87 | ζ85 | ζ83 | ζ87 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | 1 | 1 | i | -1 | i | -i | ζ87 | ζ85 | ζ83 | ζ83 | ζ85 | ζ87 | ζ8 | ζ8 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2i | -2i | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2i | 2i | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | -4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ22 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 2i | -2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | -2i | 2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
(1 29)(2 9)(3 14)(4 28)(5 25)(6 13)(7 10)(8 32)(11 22)(12 19)(15 18)(16 23)(17 27)(20 26)(21 31)(24 30)
(1 5)(2 24)(3 7)(4 18)(6 20)(8 22)(9 30)(10 14)(11 32)(12 16)(13 26)(15 28)(17 21)(19 23)(25 29)(27 31)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 31 19 14)(2 22 20 4)(3 29 21 12)(5 27 23 10)(6 18 24 8)(7 25 17 16)(9 11 26 28)(13 15 30 32)
G:=sub<Sym(32)| (1,29)(2,9)(3,14)(4,28)(5,25)(6,13)(7,10)(8,32)(11,22)(12,19)(15,18)(16,23)(17,27)(20,26)(21,31)(24,30), (1,5)(2,24)(3,7)(4,18)(6,20)(8,22)(9,30)(10,14)(11,32)(12,16)(13,26)(15,28)(17,21)(19,23)(25,29)(27,31), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,31,19,14)(2,22,20,4)(3,29,21,12)(5,27,23,10)(6,18,24,8)(7,25,17,16)(9,11,26,28)(13,15,30,32)>;
G:=Group( (1,29)(2,9)(3,14)(4,28)(5,25)(6,13)(7,10)(8,32)(11,22)(12,19)(15,18)(16,23)(17,27)(20,26)(21,31)(24,30), (1,5)(2,24)(3,7)(4,18)(6,20)(8,22)(9,30)(10,14)(11,32)(12,16)(13,26)(15,28)(17,21)(19,23)(25,29)(27,31), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,31,19,14)(2,22,20,4)(3,29,21,12)(5,27,23,10)(6,18,24,8)(7,25,17,16)(9,11,26,28)(13,15,30,32) );
G=PermutationGroup([[(1,29),(2,9),(3,14),(4,28),(5,25),(6,13),(7,10),(8,32),(11,22),(12,19),(15,18),(16,23),(17,27),(20,26),(21,31),(24,30)], [(1,5),(2,24),(3,7),(4,18),(6,20),(8,22),(9,30),(10,14),(11,32),(12,16),(13,26),(15,28),(17,21),(19,23),(25,29),(27,31)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,31,19,14),(2,22,20,4),(3,29,21,12),(5,27,23,10),(6,18,24,8),(7,25,17,16),(9,11,26,28),(13,15,30,32)]])
Matrix representation of C23.15M4(2) ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
9 | 4 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[9,0,0,0,0,0,4,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,13,0,0,0,0,0,0,13,0,0],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,0,0,13,0] >;
C23.15M4(2) in GAP, Magma, Sage, TeX
C_2^3._{15}M_4(2)
% in TeX
G:=Group("C2^3.15M4(2)");
// GroupNames label
G:=SmallGroup(128,49);
// by ID
G=gap.SmallGroup(128,49);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,346,521,136,2804]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*d^5>;
// generators/relations
Export